Correlations between the Transfer Thermodynamics of Simple Electrolytes and Structural Parameters with Particular Reference to Steric Hindrance

David Feakins,* Brian E. Hickey, Martin Knox, Patrick J. McCarthy, and W. Earle Waghorne

Department of Chemistry, University College, Belfield, Dublin 4, Republic of Ireland

Structural studies on Li⁺, Na⁺, Ca²⁺, and Ag⁺ in aqueous solution by neutron diffraction and computer simulation explain certain trends in the free energies of transfer of these ions from water to mixed aqueous solvents; in particular, the thermodynamic evidence of decreasing steric hindrance to solvation by bulky ligands in the order $Li^+ > Na^+ > Ag^+$ is consistent with the structures of the ion-complexes in aqueous solution.

Neutron diffraction with isotopic substitution, a technique recently developed by Enderby *et al.*,¹ allows the distribution of water molecules around ions in aqueous solution to be determined with unprecedented confidence. Li⁺ (6) and Ca²⁺¹ (10) (Table 1) are close-packed by their (*n*) coordinated water molecules.¹ MD (molecular dynamics) calculations² give essentially the same structures, so we can accept their value (6) for Na⁺, for which the experimental technique is unsuitable. Ag⁺ (4) has the most open structure of these four key ions.³

The purpose of this communication is to demonstrate some striking correlations between these results and certain thermodynamic quantities. The free energies of transfer of H⁺, Li⁺, Na⁺, and Ag⁺ chloride from water to certain mixed aqueous solvents in Table 2 are selected from many such values.⁴ Although the ΔG_t° (MCl) are all positive, Feakins and Watson⁵ suggested that ΔG_t° for cations is dominated by a negative term, ΔG_t° (M⁺)₁, because the organic molecules are stronger Lewis bases than water. For 'hard' cations and ligands, interacting electrostatically, equation (1) applies.

$$\Delta G_{\rm t}^{\circ}({\rm M}^+)_1 = -N_{\rm A} \Delta qezn R^{-1} \tag{1}$$

The effective charge in the co-ordinating lone-pair orbital changes by $-\Delta q$ on average when the ion is transferred; it

Figure 1. $\Delta G_t^{\circ} vs. \rho_M^{-1}$; water to 30% (w/w) acetone (1 cal = 4.184 J).

Figure 2. $\Delta G_t^{\circ} vs. \rho_M^{-1}$; water to 10% (w/w) Bu^tOH.

'sees' a charge ze (z = 1 for Li⁺, Na⁺; Na⁺; 2 for Ca²⁺) at the centre of the ion at a distance $R = r_i + \delta$. We take $\delta = 0.6$ Å; the choice is not critical. Now equation (2) holds, where b includes $\Delta G_t^{\circ}(Cl^-)$ and constant or near-constant terms in $\Delta G_t^{\circ}(M^+)$. Since Li⁺ and Na⁺ have common n, z, and $R_{Li} < R_{Na}$, $\Delta G_t^{\circ}(LiCl) < \Delta G_t^{\circ}(NaCl)$ invariably (Table 2).⁴

$$\Delta G_{\rm f}^{\circ}({\rm MCl}) = -N_{\rm A} \Delta qezn R_{\rm M}^{-1} + b \tag{2}$$

Feakins, Lawrence, and Tomkins⁶ suggested that Ag⁺ interacts with 'hard' ligands like a 'hard' alkali-metal ion, but more strongly for a given radius because its nuclear charge is more weakly shielded (z > 1). Thus, invariably, $\Delta G_t^{\circ}(\text{AgCl})$ $< \Delta G_t^{\circ}(\text{NaCl})$, Table 2. The short Ag–O distance (Table 1) now confirms the strong interaction. Since the more weakly interacting Na⁺ has about the same M–O and n = 6, the shielding in Ag⁺, with n = 4, must be stereochemically selective as well as weak.

With regard to steric hindrance, replacement of one water ligand in the octahedral aqueous complex of Li⁺ by Bu^tOH for example would result in severe steric strain, raising ΔG_{t}° above the value expected from equation (2). Ag⁺, with bigger

Table 1. Structural parameters.^a

Ion	Pauling radius r _i /Å	Co-ordination number ^b n	M–O/Å	0–0/Å
Li+	0.60	6	1.95	2.76
Ca ²⁺	0.99	10	2.46	2.80°
Na+	0.95	6 ^d	2.35°	3.3
Ag+	1.26	4	2.41	3.94
Sr ²⁺	1.13	10	2.55°	2.9°
Ba ²⁺	1.35	10	2.75°	3.1°

^a Figures in **bold** type are based on experimentally determined neutron diffraction first order difference data. Italicised figures are by analogy only. ^b To nearest whole number. ^c Assuming a bicapped dodecahedron. ^d MD calculations. ^e Taken as $r_i + 1.4$ Å.

Table 2. Representative free energies of transfer ΔG_t° /cal mol⁻¹, molar standard states.

Water to 20% (w/w)	HCl	LiCl	AgCl	NaCl
Methanol	351	623	710	883
Dioxane	427	631	639	755
Acetone	371	710	696	820
Bu ^t OH	433	910	764	1089
DMSO	25	282	82ª	509

^a The interaction of Ag⁺ with DMSO involves d_{π} - p_{π} interactions (see text).

Figure 3. ΔG_t° vs. ρ_M^{-1} ; water to 20% (w/w) MeOH.

ligand-ligand separations, and H⁺, whose solvation is based on H₃O⁺ or SH⁺ units, should be less vulnerable. Despite different *n* or *z*, they can be brought into correspondence with Li⁺ and Na⁺ by re-writing equation (2) as equation (3).

$$\Delta G_{\rm t}^{\circ}({\rm MCl}) = a\rho_{\rm M}^{-1} + b \tag{3}$$

In methanol-water, where least hindrance is expected, we put $\rho_{\rm M} = R_{\rm M}$ for Li⁺ and Na⁺ and so recover values of $\rho_{\rm H}$ (0.97 Å) and $\rho_{\rm Ag}$ (1.31 Å) which vary very little (±0.02 Å) over seven transfers up to 80% methanol. These parameters, whose precise significance is unimportant in what follows, reproduce the behaviour of the ions in a remarkable and revealing way. For transfers to seven dioxane-water and acetone-water mixtures, up to 60% acetone, ΔG_t° is accurately linear in ρ_M^{-1} for the chlorides of H⁺, Ag⁺, and Na⁺, but the ΔG_t° (LiCl) now lie higher, markedly so for acetone-water (*e.g.* Figure 1); the solvation of Li⁺ by dioxane and acetone is hindered. For five transfers in BuⁱOH – water, up to 50% BuⁱOH, the points for Li⁺ and Na⁺ now both lie above the Ag⁺-H⁺ line (Figure 2) showing that the solvation of Na⁺ by BuⁱOH is also hindered. This susceptibility to steric hindrance, decreasing in the order Li⁺ > Na⁺ > Ag⁺, is completely consistent with the increase in the O—O distances of their complexes (Table 1). Table 2 shows the value of Ag⁺ as an unhindered marker; ΔG_t° (LiCl) shifts to higher values relative to ΔG_t° (AgCl) in the expected order MeOH < dioxane < acetone < BuⁱOH.

The dimethyl sulphoxide (DMSO)-water system presents two anomalies. Additional stabilisation of Ag⁺ results from d_{π} - p_{π} interaction with the organic ligand.⁷ However for four transfers up to 60% DMSO the ΔG_{t}° for Li⁺, Na⁺, and H⁺ chlorides are accurately linear in ρ_{M}^{-1} , denoting no steric hindrance of Li⁺ or Na⁺. Again, the donation of the p-electrons of oxygen into acceptor d-orbitals on sulphur may favour an sp lone-pair donor orbital and a linear M-O-S configuration which keeps the methyl groups clear of adjacent ligands.

For alkaline-earth chlorides, equation (2) takes the form of equation (4). Since (Table 1) $n(M^{2+}) > n(M^+)$, we predict $\frac{1}{2}\Delta G_{t}^{\circ}(MCl_{2}) < \Delta G_{t}^{\circ}(MCl)$ for M^{2+} , M^+ of the same radius. In 10% methanol-water (Figure 3) the $\frac{1}{2}\Delta G_{t}^{\circ}(MCl_{2})$ lie well

below $\Delta G_t^{\circ}(MCl)$ as $f(\rho_M^{-1})$. In the same plot for 20% BuⁱOH-water (Figure 2) the Ag⁺-H⁺ line now defines unhindered behaviour. This graph again shows the predictive value of the structural information. If the solvation of Li⁺ is

$$\frac{1}{2}\Delta G_{t}^{\circ}(\mathrm{MCl}_{2}) = -N_{\mathrm{A}}\Delta qenR_{\mathrm{M}}^{-1} + b \tag{4}$$

hindered, that of Ca²⁺, with identical O–O, must also be; if Na⁺ is hindered so too will be Ca²⁺, Sr²⁺ and Ba²⁺. The $\frac{1}{2}\Delta G_{\rm c}^{\circ}$ (MCl₂) are thus displaced upwards, lying on, or only slightly below, the Ag⁺-H⁺ line.

Received, 20th October 1986; Com. 1483

References

- 1 J. E. Enderby, Annu. Rev. Phys. Chem., 1983, 34, 155.
- 2 K. Heinzinger, Pure Appl. Chem., 1985, 57, 1031.
- 3 G. W. Neilson and N. Skipper, Chem. Phys. Lett., 1985, 114, 35.
 4 See e.g. D. Feakins, M. Knox, and B. E. Hickey, J. Chem. Soc., Faraday Trans. 1, 1984, 80, 961, and earlier papers in the same series; T. A. Clune, D. Feakins, and P. J. McCarthy, J. Electroanalyt. Chem., 1977, 84, 199; K. H. Khoo, J. Chem. Soc. A, 1971, 2932.
- 5 D. Feakins and P. Watson, J. Chem. Soc., 1963, 4734.
- 6 D. Feakins, K. G. Lawrence, and R. P. T. Tomkins, J. Chem. Soc. A, 1967, 753.
- 7 D. Feakins, B. E. Hickey, and P. J. Voice, J. Chem. Soc., Faraday Trans. 1, 1979, 75, 907.